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Abstract. Recent improvements on a 3-D unstructured-mesh finite-volume method for complex aerospace ap-
plications are presented. The correct modelling of turbulence effects in aerospace flows is paramount for their
successful computation. One-equation and two-equation models based on the linear approzimation of the Boussi-
nesq hypothesis are used. The linear approzimation is also extended to include a nonlinear formulation resulting
from an ezxplicit algebraic Reynolds-stress model. Finally, two Reynolds-stress closures are also available. Both
nonlinear eddy-viscosity and Reynolds-stress model formulations naturally offer the potential for more reliable pre-
dictions than linear approzimations since anisotropy of the Reynolds stresses can be accounted for. Experimental
and DNS results are used for verification and validation of the turbulence model implementation. Focus is directed
towards the effect of anisotropy for the resolution of the interaction between shock wave and boundary layers. In
general, good agreement with theoretical or experimental results is obtained.
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1. Introduction

The present paper reports on recent improvements on a 3-D unstructured-mesh finite-volume method for
complex aerospace applications developed by the CFD group at Instituto de Aeronautica e Espaco (TAE).
The objective of the CFD group at IAE is to develop the capability of simulating 3-D, viscous turbulent
flows over general launch vehicle configurations. Viscous simulations at high Reynolds numbers are typical for
aerospace applications, such as the ones of interest to IAE, and turbulence is certainly important for these flow
regimes. The correct modelling of turbulence effects in aerospace flows is decisive for consistent computation
of complex phenomena such as boundary layers subjected to adverse-pressure gradients, boundary-layer/shock-
wave interactions, wing wakes, mixing layers, and others.

The current code has already been used to simulate turbulent viscous flows over typical aerospace config-
urations with linear eddy-viscosity turbulence models (EVMs), with successful results so far (Bigarella et al.,
2004). For such effort, the Spalart and Allmaras, 1994, one-equation and the Menter, 1994, SST two-equation
turbulence models have been chosen. Further extension of the code included the realisable k-¢ (Shih et al.,
1994) and the low-Reynolds-number k-w (Fluent, 1998) models. The linear approximation resulting from the
Boussinesq hypothesis, used by the previous models, is currently extended to include a nonlinear formulation
resulting from the explicit algebraic Reynolds-stress model (EARSM) of Wallin and Johansson, 2000. The
nonlinear formulation allows for better capture of normal stress and streamline curvature effects, which are
important for the already mentioned flow phenomena.

For completeness of the modelling effort, two Reynolds-stress models (RSMs) are also included. Their for-
mulation naturally offers the potential for more reliable prediction of the aforementioned turbulence effects,
since important terms are exactly treated. The high-Reynolds number Menter StressBSL uses a linear approx-
imation for the pressure correlation term and an isotropic approximation to the turbulent dissipation. The
more advanced Craft-Launder RSM (Batten et al., 1999) is a low-Reynolds number closure, with an anisotropic
representation of the turbulent dissipation, and a cubic model for the pressure correlation term.

Extensive validation of this code had already been initiated (Scalabrin, 2002; Bigarella et al., 2004; Bigarella
and Azevedo, 2005). Currently, turbulence models are validated for a parallel-wall channel flow case. Numerical
results are compared to DNS results. Further results are presented for transonic flows over a supercritical
aerofoil. Simulation results are compared to available wind-tunnel experimental data. In general, acceptable
numerical results are obtained.
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2. Theoretical Formulation
2.1. RANS Equations

The flows of interest in the present context are modelled by the 3-D compressible Reynolds-averaged Navier-
Stokes (RANS) equations (Scalabrin, 2002), written in dimensionless form and assuming a perfect gas, as
0 T
a—?+V-(Per):O, Q=[p pu pv pw e] , (1)
where Q is the dimensionless vector of conserved variables, p is the fluid density, v = {u, v, w} is the Cartesian
velocity vector and e is the fluid total energy per unit of volume. The inviscid flux vector, P., and the viscous
flux vector, P,, are given as
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where ¢ = x, y or z are the indices used within the Einstein indexing notation; and ¢ = {,,1,, 7, } is the Cartesian
coordinate unit vector. Furthermore, Tf- is the shear-stress tensor, u; is the Cartesian velocity component, x;
is the Cartesian coordinate, d;; is the Kronecker delta, and (3; = Tfjuj + ¢;, where g; is the heat transfer vector
Cartesian component. The dimensionless pressure, p, can be calculated from the perfect gas equation of state.

This set of equations is solved according to a finite volume formulation (Scalabrin, 2002). For convective-
flux calculations on the volume faces, the Roe, 1981, flux-difference splitting scheme is currently used. In
order to achieve 2nd-order of accuracy in space, properties are linearly reconstructed in the faces based on
the van Leer, 1979, MUSCL algorithm. The implementation follows a modified and generalised Barth and
Jespersen, 1989, multidimensional limiter formulation from Bigarella and Azevedo, 2005. Diffusive-flux terms
are discretized based on a usual centred scheme, with properties in the faces obtained as an arithmetical average
of the properties in the neighbouring cells. Flow equations are integrated in time by a fully explicit, 2nd-
order accurate, 5-stage, Runge-Kutta time stepping scheme. An agglomeration full-multigrid scheme (FMG) is
included in order to achieve better convergence rates for the simulations. More details on the theoretical and
numerical formulations can be found in Bigarella et al., 2004, and Bigarella and Azevedo, 2005.

2.2. Turbulence Modelling

High-Reynolds number simulations of flows over complex aerodynamic configurations require adequate tur-
bulence closures in order to correctly account for the large transport effects of the turbulence at such flight
conditions. The turbulence effects are included into the RANS equations by the Reynolds-stress tensor, defined
by 7/; = —Repu;u;. The model transport equations are also solved according to the finite volume approach.
The time march is performed using the implicit Euler scheme as in Scalabrin, 2002. For the discretization of
the advection term a 1st-order upwind scheme is used, in order to avoid oscillations near discontinuities. For
the discretization of the diffusion term an alternative method to compute non-oscillatory derivatives in the face
is used as an approximate finite difference scheme. This approximation uses the adjacent cell centroid property
and relative distance to build the derivative in the face. More details can be found in Bigarella and Azevedo,
2006.

3. Eddy-Viscosity Turbulence Models

Eddy viscosity models compute the Reynolds stresses through the Boussinesq hypothesis, which states that
the turbulence stresses are a linear function of the mean flow straining rate times a modifying constant such as
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where p; is the eddy viscosity coefficient, computed by the chosen turbulence model.
3.1. Spalart-Allmaras (SA) Model

The Spalart and Allmaras, 1994, single equation model solves a transport equation for the modified eddy
viscosity coefficient fi. This models is derived along intuitive and empirical lines, relying heavily on calibration



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0271

by reference to a wide range of experimental data (Spalart and Allmaras, 1994). It can be easily integrated to
the wall for meshes that guarantee y+ ~ 1 close to the wall. This same model has been applied without any
further modification by the CFD community for 3-D compressible flows with good results so far (Spalart, 2000;
Leschziner and Drikakis, 2002) in shock-induced separations and adverse pressure gradient boundary layers.

3.2. Low-Reynolds-Number Wilcox k-w (WKOM) Model

The k-w model is an empirical closure based on transport equations for k and w (Wilcox, 1998). This model
is constantly evolving over the years, including corrections and improvements to a wide range of different flow
cases. A low-Reynolds number version of the k-w model, also enhanced for improved accuracy in free shear
flows, from Fluent, 1998, is currently used. The model is closed with constants (Fluent, 1998) obtained from
calibration against key test cases for turbulent flows (Wilcox, 1998). This model can also be integrated to the
wall.

3.3. Realisable k-¢ (RKE) Model

The realisable k-¢ model from Shih et al., 1994, solves transport equations for k£ and e. Differently from a
standard k-e model (Jones and Launder, 1972), this model employs in the dissipation-rate equation a realisable
estimate of the turbulent time scale, and an additional term developed to improve the model response to
adverse-pressure gradient regions, to guarantee acceptable model behaviour. Furthermore, the eddy viscosity
coefficient is defined for this model as a function of the local flow straining in order to also increase the model
realisability and response to adverse pressure gradients. A low-Reynolds number damping function, designed
to account for the damping of turbulent fluctuations near solid walls, is also considered in the eddy viscosity
definition. These enhancements render this model robust and consistent behaviour near solid walls, and better
response to pressure gradients.

3.4. Shear-Stress Transport (SST) Model

The Menter, 1994, SST model is derived from a blend of the original k-w (Wilcox, 1998) and the standard
k-¢ (Jones and Launder, 1972) models. It solves reported problems of the k-w closure regarding freestream value
dependency (Menter, 1994) while keeping the better numerical behaviour of this model close to the wall. Model
constants are generally calculated as ¢ = F1¢1 + (1 — F1) ¢, where ¢ represents the set of constants for the k-w
model and ¢9, the set for the standard k-¢ model (Menter, 1994). The F; variable is a blending function that
turns on the k-w closure near solid walls and the standard k-e¢ model outside boundary layers. This function is
computed based on checks over turbulence properties through the boundary layer.

Standard two-equation models are acknowledged for not being capable of accurately computing adverse
pressure gradient or separated flows (Menter, 1994). It is demonstrated that this is a result of the missing
effect of turbulent shear-stress transport in this type of flow (Johnson and King, 1985). In order to take this
shear-stress into account, at least in an ad-hoc fashion, the eddy viscosity coefficient is here constrained by the
magnitude of the shear-stress tensor. This limiting comes from the knowledge that the shear stress inside the
boundary layer is proportional to &k as Tfj = aipk for i # j, and that, in adverse pressure gradient regions,
the Boussinesq assumption 7/; = 24,5 is known to overproduce that term (Menter, 1994). Thus, in such an
adverse pressure gradient region, production of k, which is proportional to .S, would incorrectly be larger than
its dissipation, w, or S > ajw. The SST eddy viscosity coefficient is defined so as to avoid this undesired
behaviour. In the simpler BSL model (Menter, 1994), the SST constraint in the eddy viscosity is ignored.

4. Reynolds-Stress Turbulence Models
4.1. General Considerations

Reynolds stress models use the exact equations for the transport of Reynolds stresses obtained by taking
velocity-weighted moments of the Navier-Stokes equations and neglecting density fluctuations. The general
form of a RSM is given by

——J = P+ DY+ DY + DV + @ — ey (4)

with the individual terms representing specific turbulence mechanisms, where P;; is the turbulent production;
Dy; is the molecular diffusion; ij is the turbulent diffusion; ij is the pressure diffusion; ®7; is the pressure-
strain correlation; and ¢;; is the turbulent dissipation. The turbulent production and the molecular diffusion



Proceedings of the ENCIT 2006, ABCM, Curitiba — PR, Brazil — Paper CIT06-0271

terms do not require modelling. The representation of the remaining terms is model dependent and they are
discussed separately in the respective following subsections.

RSMs also require the solution of another transport equation for a measure of the turbulent length scale,
usually represented by a turbulent kinetic energy dissipation quantity. The estimation of this quantity is perhaps
the weakest point in Reynolds-stress modelling. An exact equation for the dissipation rate can be derived from
the Navier-Stokes equations, but this results in a very complicated form. The usual solution is to use an
empirically built equation, calibrated against typical turbulence test cases.

4.2. Modified Craft-Launder RSM (CLMRSM)

This RSM is a variation of the nonlinear RSM of Craft and Launder, 1996, which does not require wall-
topology parameters such as normal-to-wall vectors and distance from the wall. Modifications of some wall-
proximity corrections have been applied to correct the latter model incorrect response to shock waves, which
were falsely interpreted as regions of strong inhomogeneity (Batten et al., 1999).

The generalised gradient diffusion hypothesis (GGDH) of Daly and Harlow, 1970, is used for modelling the
turbulent diffusion. The pressure diffusion term is also modelled by an empirical approach. Inhomogeneity-
indicator vectors are used to indicate regions close to the wall, where turbulence is highly anisotropic. These
vectors are based on the Lumley’s stress-flatness parameter (Lumley, 1978), which varies between unity in
isotropic turbulence regions and zero as the turbulence approaches a two-component limit.

The pressure-strain correlation is considered a critical element for RSMs since it can be of the order of
the production and dissipation terms, hence playing a crucial role in most flow cases. Moreover, since it
involves correlations which essentially cannot be measured, its modelling requires substantial effort. A cubic
pressure-strain model is here used in conjunction with additional coefficients and inhomogeneity corrections.
The proposed (Batten et al., 1999) cubic invariant aims at integration through the viscous sublayer and at
consistently acting through shock waves, which is an important feature for the flows of interest to IAE.

The dissipation tensor blends isotropic and wall-limiting terms, with an additional term to account for the
dip in the shear-stress dissipation rate in the buffer layer. An equation for the homogeneous dissipation rate, ¢*,
is proposed to determine e. The equation of €* incorporates a few modifications to better match low-Reynolds
number effects near solid walls (Batten et al., 1999). The advantage of using the equation for the homogeneous
dissipation rate, €*, is the simple wall boundary condition € , = 0. Details of this model are given by Batten
et al., 1999, and Bigarella and Azevedo, 2006.

4.3. StressBSL RSM

A numerically more robust isotropic turbulence diffusion formulation is chosen for this model. The pressure
diffusion, as usual in RSMs, is here neglected. This option uses a linear pressure-correlation model derived
from Rotta, 1951 and Launder et al., 1975, along with an isotropic turbulence assumption for the turbulent
dissipation tensor. The turbulence-length-scale determining equation is based on the Menter BSL w equation
(Menter, 1994). This set of equations composes a high-Reynolds number turbulence closure. The interested
reader is referred to Bigarella and Azevedo, 2006, for thorough details on this model.

4.4. Wallin-Johansson EARSM (NLBSL)

The main motivation in the development of EARSMs is the general need for improvements in the prediction
of complicated turbulent flow phenomena using the platform of existing CFD codes based on two-equation
eddy-viscosity turbulence modelling capability. This idea represents an interesting way of cheaply incorporating
advanced turbulence effects, such as streamline curvature and normal stress separation, into an already existing
two-equation turbulence model framework, avoiding thus the large amount of computational resources required
by the solution of RSMs.

The classical algebraic RSM (ARSM) starts by assuming equilibrium turbulence, which is equivalent to
neglecting advection and diffusion in the RSM transport equations. In the formulation of Wallin and Johansson,
2000, the isotropic assumption for the dissipation tensor along with a slight modification of the linear pressure-
strain correlations of the StressBSL model are employed. As a result, one gets an implicit algebraic equation for
the compressible Reynolds-stress tensor. In the formulation of Wallin and Johansson, 2000, the anisotropy tensor
(Bigarella and Azevedo, 2006) is taken instead of the Reynolds-stress tensor, in order to ease the mathematical
notation.

The solution of this implicit equation is known to be numerically cumbersome and, thus, a general form for
the anisotropy tensor in terms of the shear-stress and rotation tensors is proposed by Wallin and Johansson,
2000. This is the most general form for this tensor rank, composed of ten tensorial independent groups to which
all higher-order tensor combinations can be reduced with the aid of the Caley-Hamilton theorem. Each n-th
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expansion term is multiplied by a controlling coefficient, 3,,, which may be function of independent invariants
derived from the shear-stress and rotation tensors. The explicit solution for the anisotropy tensor now relies
on the determination of the §,, coefficients. Some researches adopt the approach of calibrating those terms to
a set of representative turbulence problems, as Craft et al., 1996. This approach, however, may decrease the
generality of the expanded nonlinear terms.

The proposed anisotropy tensor expansion is inserted into the implicit ARSM equation. An explicit algebraic
equation for the nonlinear Reynolds stress terms can now be fully determined, as detailed by Wallin and
Johansson, 2000. The EARSM is implemented as a plugin to the BSL model. However, the BSL equation
was designed in conjunction with a linear constitutive Boussinesq hypothesis. This fact can compromise the
performance of the model if rather combined with a nonlinear closure, such as an EARSM (Hellsten, 2005).
In order to circumvent these limitations, Hellsten, 2005, proposed a recalibration of the BSL model to make it
consistent when augmented with the EARSM nonlinear terms.

5. Results and Discussion
5.1. Imitial Remarks

Linear turbulence models are developed considering effects that are essentially linked to the shear stress in
the local streamwise direction. Such effects are, for instance, the skin friction or the effect of the boundary layer
displacement into the outer irrotational flow. Isotropy of normal stresses is assumed along a streamline because,
in a simple shear flow, which usually serves as a calibration milestone for linear EVMs, the normal stresses are
dynamically inactive, not contributing to the momentum balance.

The response of the boundary layer to adverse pressure gradient or streamline curvature is, however, dictated
by the shear stress as well as the normal stresses. In that case, normal stresses are dynamically active, and
they also work towards sensitising the shear stress to the normal straining (as through a shock wave) and
curvature. In other words, the shear stress is generated by an interaction between the crossflow normal stress
and the local flow straining in such cases. Near the wall, strong anisotropy is found, where the streamwise
normal stress is generated by local flow shear straining, and other normal stresses are fed by the redistributive
pressure-strain correlation, which tends to steer turbulence towards isotropy. Those aspects emphasise the need
for all turbulence models to return realistic levels of anisotropy. These effects are addressed in the test cases to
come.

5.2. Fully-Developed Channel Flow

A fully-developed plane-symmetric channel flow DNS experiment as studied by Kim et al., 1987, at friction
Reynolds number Re, = 180 based on the channel half height, is reproduced with the current numerical code.
A grid configuration which supports mesh-independent results, with 90 points along the wall-normal direction
and the wall-nearest node located at y™ =~ 1, is used. Reynolds stress tensor components obtained with the
present computation and DNS data are plotted in Fig. 1. It is interesting to observe in this figure the already
commented fact that the linear EVMs, namely the SA, SST, RKE and WKOM models, predict isotropic normal
stress components. In the SA case, the normal stresses are actually zero. The nonlinear augmentation of the
NLBSL formulation allows for separation of the normal stresses. Since NLBSL is a high-Reynolds-number
closure, the normal stresses close to the wall do not match the actual stress distribution. The same behaviour
is found for the StressBSL RSM. Both closures are high-Reynolds-number models and they predict similar
Reynolds stresses. The more advanced low-Reynolds-number CLMRSM presents much stronger anisotropy and
a very good match with DNS data. Although the streamwise normal stress is underpredicted by this model,
this is of no impact in this particular flow because the shear stress is sensitive to the crossflow normal stress,
as already discussed. Careful validation of the boundary layer results and additional details can be found in
Bigarella and Azevedo, 2006. Although the current Reynolds number may be considered somewhat low, no
differences in the models have been found for larger Reynolds number. This is an indication that the models
act consistently even for lower Reynolds number flows.

5.3. OAT15A Supercritical Aerofoil

The interaction between shock waves and boundary layers is of considerable practical importance in transonic
and supersonic aerospace vehicle design. Strong shock waves may cause massive flow separation leading to early
wing stall or other adverse effects. The mechanics of such interactions are complex and poorly understood.
However, it is well known that the interaction is highly sensitive to the boundary layer turbulence state, and its
response to the deceleration caused by the shock wave. The turbulence field is highly anisotropic in that region
and it responds differently under shear, normal or curvature straining. Therefore, there lies the importance
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Figure 1: Channel flow at Re, = 180. Present computation and DNS Reynolds stresses.
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of comnsistently modelling the turbulence anisotropy and its sensitivity to those types of straining, as earlier
discussed.

In order to demonstrate the importance of these remarks, a transonic flow condition over the OAT15A
supercritical aerofoil (Rodde and Archambaud, 1994) is addressed. Flight conditions are M., = 0.724, Re = 3
million, and angle of attack a = 1.15 deg. This regime is chosen because the resulting thick boundary layer
may more largely interact with the shock wave, being a highly demanding test case for the turbulence models.
A grid configuration that is known to support mesh independent results (Bigarella and Azevedo, 2006), with
410 cells along the chord, 34 cells within the boundary layer, and the farfield located 240 chords away, is used.
Convergence is considered when the maximum residue of the density field drops 7 orders of magnitude. However,
lift and drag coeflicients are also monitored to verify force convergence in case density residue would stall.

Numerical pressure coefficient distributions obtained with all turbulence models are compared to the re-
spective experimental data, case 14 in AGARD 303 data (Rodde and Archambaud, 1994), in Fig. 2. It can
be clearly seen in this figure the beneficial effects of anisotropy-capable formulation in the turbulence model.
All anisotropy-resolving closures, namely NLBSL, StressBSL, and CLMRSM, present good correlation with
the experimental result in capturing the shock wave position and the overall pressure distribution. As usual
with Boussinesqg-based eddy-viscosity models, however, all other linear models indicate a further downstream
shock wave location. In the SST case, nevertheless, the eddy viscosity coefficient, limited by the Bradshaw-type
constraint, returns a more consistent result among other linear models.

External-probe boundary layer plots at xz/c = 95% for this case are also available. Numerical results are
compared to the respective experimental data in Fig. 3. Determining differences are observed in the boundary
layer plots in Fig. 3. It is initially seen a strikingly match of the boundary layer obtained with NLBSL and
the experimental result. No other model achieves such high accuracy level, in this case. SST, CLMRSM and
StressBSL adequately compare to the experimental data, whereas other models present larger differences.

6. Concluding Remarks

The paper presents results obtained with a finite volume code developed to solve the compressible RANS
equations. The code uses a Runge-Kutta type scheme to perform time marching. The code is designed to use
unstructured meshes composed by any combination of tetrahedra, hexahedra, prisms and pyramids. An ag-
glomeration multigrid scheme provides large convergence acceleration for the numerical simulations. In general,
numerical solutions of complicated flows such as transonic turbulent flows about typical aerospace configurations
can be obtained in half the previous time used by the single-grid simulation. The convective fluxes are com-
puted by the Roe upwind scheme with MUSCL-type property reconstruction at the faces to achieve 2nd-order
of accuracy in space.

Turbulence effects are added to the RANS equations by several advanced turbulence models. The chosen
models are specifically designed for aerospace-type flows. The closures range from linear eddy-viscosity, such as
the Spallart-Allmaras, SST, realisable k-¢, and low-Reynolds-number k-w models, to nonlinear eddy-viscosity
and Reynolds-stress closures. The linear BSL eddy-viscosity formulation is augmented with nonlinear terms
coming from an explicit algebraic expansion of a simplified Reynolds-stress equation to compose the NLBSL
model. Furthermore, two Reynolds-stress models are also considered. The high-Reynolds-number, linear, and
isotropic-dissipation StressBSL model, and the low-Reynolds-number, nonlinear, and anisotropic-dissipation
CLMRSM closure are the available Reynolds-stress model options.

Comparison against DNS data for a parallel-wall channel flow case shows the levels of turbulence representa-
tiveness that is obtained with each modelling approach. Differences are observed when anisotropy is considered.
In these cases, separation of normal stresses can be observed. The code is also able to correctly solve for complex
flows, such as the transonic turbulent flow about a supercritical aerofoil. In this case, it is observed that the
correct modelling of the turbulence effects inside the boundary layer, mainly regarding the anisotropy of the
normal stresses, is of paramount importance for the successful computation of shock wave /boundary layer flows.
The NLBSL model presents a large advantage over the other currently considered options since it returns much
higher accurate results than other models at computational costs similar to those of a standard two-equation
model. The results presented here are a good indication of the capability of simulating turbulent flows about
relevant aerospace geometries that can be achieved with the present numerical tool.
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